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Abstract--The relationship between the various Planck mean coefficients in the optically thin limit is 
discussed in terms of isothermal curves of growth. The specification of a general thin limit is shown to 
require two restrictive statements--one specifies the optical depth to be small and the other states the 
degree of radiative nonequilibrium. In general the limit is scaled by both the ordinary and modified 
Planck means. For linearized problems near radiative equilibrium, however, these two means reduce to the 

linear Planck mean that alone acts as the inverse scaling length. 

NOMENCLATURE 

B,., Planck function ; 
I \‘I) specific intensity ; 

r, space variable; 

T, temperature ; 

Lo. 

spectral absorption coefficient; 
linear Planck mean coefficient ; 

6i MP, modified Planck mean coefficient ; 
d P, ordinary Planck mean coefficient ; 

V, spectral frequency. 

Superscripts 
. quantity restricted to certain frequency 

0, ranges by the integration convention. 

Subscripts 
0 quantity pertaining to the boundary. 

1. INTRODUCTION 

THE OPTICALLY thin limit is a useful concept 
because it greatly simplifies the mathematical 
and physical complexities of radiative transfer. 
It therefore serves the academician as a teaching 
device and the researcher as a limit that must be 
contained in any new formulation. For gases in 
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molecular equilibrium, this limit is obtained by 
two different methods. One approch neglects 
the boundary conditions and argues directly 
from the differential equation of radiative 
transfer (cf. [l], p. 465). The spectral specilic 
intensity is taken as being much less than the 
Planck function for some range of frequency 
and some region in space. This leads to the 
definition of the well-known Planck mean 
emission coefficient that acts as a single inverse 
scaling length for radiative transfer in the 
emission-dominated limit. The second approach 
is argued from the general solution of the 
transfer equation, which contains the boundary 
conditions (see [2], p. 214). Here the spectral 
optical depth is assumed much less than unity. 
This defines the ordinary Planck mean and a 
modified absorption Planck mean [3]. The 
latter is a spectral mean where the gaseous 
absorption coefficient is weighted by the incident 
intensity at the boundary. For a black-body 
boundary, the Planck function at a specified 
temperature becomes the weighting function. 
The conclusion is that the ordinary Planck mean 
scales optically thin problems when boundary 
conditions can be neglected, but two means, 
ordinary and modified, scale the more general 
thin limit. 
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In a recent note [4] (also cf. [S]) it is shown 
that the thin limit is scaled by the yet different 
linear Planck mean for problems near radiative 
equilibrium. This mean is weighted by the 
temperature derivative of the Planck function, 
evaluated at the reference state of radiative 
equilibrium. The same mean is also an intrinsic 
consequence of applying the nongrey substitute- 
kernel approximation to the linearized, radiative 
transmission functions [6]. 

The purpose of this paper is to show how the 
above Planck mean coefficients are related and 
necessary to describe the general optically thin 
limit. The relationship between the thin-gas 
and emission-dominated limits is first discussed 
to show that the latter is merely a more restrictive 
subcase of the former. The relationship between 
the various Planck means is then discussed in 
the simplest manner by constructing the curves 
of growth for a constant-property (isothermal) 
slnb of gas. The optically thin limit is forced to 
take on all degrees of radiative nonequilibrium 
by bounding the slab with a variable-temperature 
black wall. For general problems of radiative 
nonequilibrium, we will see that the thin limit 
is scaled by both the ordinary and modified 
Planck means. Near radiative equilibrium, 
however, these two means combine to form the 
linear Planck mean that alone scales linearized 
problems. 

2. OPTICALLY THIN LIMIT 

The equation governing the spectral specific 
intensity I, for a nonscattering gas in molecular 
equilibrium can be written, with the relatively 
small time-derivative term omitted, as (see [ 11, 
p. 463) 

a1 
2 = ‘2, (I,, - I?,). 
ar 

The subscript denotes values at the spectral 
frequency v ; cc,, is the volumetric absorption 
coefficient, B, the Planck function, and r the 
distance measured from the point at which I, 
is being considered and in the direction opposite 

to the direction of radiative propagation. For 
incident, black-body radiation characterized 
by the temperature TO at the boundary r = ro, 

the exact solution of equation (1) for paths 
through a uniform gas is 

Z&r = 0) = B,(T,) exp ( - ct,.ro) + B,(T) 

[l - exp(-vo)l, (2) 

where T is the temperature of the gas. A 
constant-property slab of gas is not essential to 
the arguments that follow and is chosen only 
for its simplicity. 

We now adopt the concept that the general 
optically thin limit is stated as 

rrrO G 1 (3) 

for all frequencies and directions of interest. 
Expanding equation (2) to first order in our 
small parameter, we obtain 

Z,(r = 0) = B,(T,) [ 1 - a,.r,] 

+ B,.(T) ct,ro + , (4) 

where B,(T,) and B,,(T) are implied to be of the 
same order of magnitude. Three subcases, that 
appear in the literature, of this general thin limit 
are obtained by further restrictive statements on 
the radiating boundary. The condition that 
&.(I’,‘,) < B,(T) gives the emission-dominated 
limit discussed by Vincenti and Kruger [3]. 
When B,.(I’,‘,) B B,,(T) we obtain an absorption- 
dominated limit, and if &To) 2: B,,(T), such 
that we can expand B,(T) about To, we obtain 
the emission-controlled limit introduced by 
Cogley et al. [4]. 

3. CURVES OF GROWTH 

These various limits, and all intermediate 
situations, are simply displayed through curves 
of growth, which are merely plots of the 
frequency-integrated specific intensity vs. an 
optical depth. Integrating equatiog(2) over all 
frequencies, and further splitting this interval 
into that for which ~1, is nonzero and that for 
which CC, is zero [6], we obtain 
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Z(r = 0) - j B,.(T,) dv 
QV#O 

Here we assume that the absorption coefficient 

lim 

is of such spectral width that averages weighted 

a 4r = 0) - j 

to the Planck function are relevant. That is, we 

{-[ 

are not considering transport where the line is 

B,(T,)d, 

spectrally narrow with respect to the spectral 

a,=@ 
width ofB,. Furthermore, absorption coefficients 

r”+o i?r, 

that exhibit phenomena characteristic of 

7 

“wings” have curves of growth that are quite 

II 
thin limit, is found analytically to be 

(or any other directly relatable ratio) measures 
the degree of radiative nonequilibrium, with 
ToiT N 1 representing the near equilibrium 
situation. The limit r. + 0 for a given CC, 
represents the optically thin limit of interest. 
The terminating slope of each of the curves in 
Fig. 1, which is the inverse scaling length for the = (I I,, GW) dv a ~,04G) dv 

;Lb W’7 dv - ;l o B,(T) dv ’ 
(6) 

The first term on the right-hand side is the ordinary Planck mean B, while the second term is the 

modified Planck mean 8,,, bbth defined for a limited frequency range. For To/T = 0 or + 1, the 
situation is emission-dominated and hp alone scales the thin limit. For To/T = co or pl, the 
absorption dominated situation is obtained and 61, alone scales the thin limit. When To/T N 1 we 
can expand the right-hand side of equations (5) about T = To and obtain the terminating slope as 

Z(r = 0) - f B,.(T,) dv 

OrVCo 
.,I o B,.(T) dv 

]}= r” ~~~~~~~~](T - T,)+higherorder terms. (7) 

different in the optically thick limit from those 
shown in Fig. 1 (see e.g. [7]). This has no effect, 
however, on the present thin-limit arguments. 

Since problems in nongrey radiative transfer 
have an infinite number of inverse scaling lengths 
(one for each spectral value of a,), we cannot plot 
generally scaled curves of growth. We can, 
however, plot the left-hand side of equation (5) 
vs. r. in a schematic manner to display the 
general optically thin limit. This is done in 
Fig. 1. 

The curves themselves are merely exponential- 
like sketches since their exact shape would 
depend on a,, which we can leave unspecified for 
present purposes.* The temperature ratio To/T 

* Each curve is monotonic, since it can be represented by 

an infinite series of the form 1 + F aiexp (- b,r,), where 
j=1 

the ai’s and bj’s are constants. It is easily seen that the 
depending on the ratio To/T, such that the curves never 
intersect. 

The bracketed term on the right, except for the 
normalization, is the linear Planck mean 
biLLpO for a restricted frequency range (cf. equation 
(31b) of [6]). The linearized situation is therefore 
degenerate in the sense that it is scaled by a single 
parametric length. 

4. CONCLUSIONS 

When specifying an optically thin limit, one 
must state both (1) that the optical paths of 
interest are small and (2) the degree of radiative 
nonequilibrium of the particular problem under 
investigation. The second statement allows one 
to specify which curve, of the many in Fig. 1, is 
being followed to small optical depths. The 
general thin limit is scaled by the difference of 
two inverse scaling lengths, i.e. 61, and I&,,. When 
the gas is near radiative equilibrium, these two 
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G/T> I.0 and Increasing 

Absarptlonr Emission 

Emission>Absorption 

Emission-dominated llmlt 

Path length, ro 

FIG. 1. Schematic curves of growth for constant-property paths 

scaling lengths combine to give the linear Planck 4. 
h mean a,.pO that alone scales linearized problems. 
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COEFFICIENTS MOYENS DE PLANC’K DANS LA LIMITE D’GPAISSEUR OPTIQLJE 

R&ad-La relation entre lcs diffkrents coefficients moyens de Planck dans la limite d’tpaisseur optique 
est envisagk & partir des courbes de croissance isotherme. On montre que la spCcification d’une limite 
d’Cpaisseur en g&&al. requiert deux aspects restrictifs, LK premier spircific que 1’Cpaisseur optique doit 
&tre petite et I’autre Ctablit le degr& de d&quilibre de rayonnement En g&&al, I’tchelle des limites 
d’kpaisseur est Ctablie & la fois par les coefficients moyens de Planck usuels et modif&. Cependanf dans 
les probltmes lintarists au voisinage de I’iquilibre de rayonnement, les deux moyennes sont confondues 
avcc la moyenne linkaire des coefficients de Planck qui Cvolue comme l’&chelle inverse des longeurs 

MITTLERE PLANCK-KOEFFIZIENTEN IM OPTISCH DUNNEN GRENZFALL 

Zusammenfassun~Die Beziehung zwischen den verschiedenen mittleren Planck-Koeffizienten im optisch 
diinnen Grenzfall wird an Hand isothermer Wachstumskurven diskutiert. Es wird gezeigt, dass die 
Betrachtung des allgemeinen, optisch diinnen, Grenzfalls auf zwei massgebende Bedingungen fiihrtAie 
eine fordert, dass die optische Tiefe klein isf die andere bestimmt den Grad de-s Strahlungsgleichgewichtes. 
Im allgemeinen wird der Grenzfall sowohl an den gewiihnlichen als such an den modifizierten Planck- 
schen Mittelwerten bemessen. Fiir linearisierte Probleme in der NHhe des Strahlungsgleichgewichtes 
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reduzieren sich jedoch diese beiden Mittelwerte mm linearen Planckschen Mittelwert, der allein als 
inverse Bezugsllngc auftritt. 

CPEAHI4E ICO3WDkl~I4EHTbI HtJIAHH.~ ;[JIlI OIITIlcIECKII 
TOHKOI? CPEflI,I 

AHHoTaq~jr-CooT~romeHEle htemfiy pa:mwwbImr rpt~,~mn~u Koa@@4q~leHTa>iu II;IaIiKa B 
rIpe~e:IbwoM cnyvae 0nTmecm T0~1<0$i cpegbr paccimTpmaeTcR B BLI;I~ moTepMmecmX 

krpaBbIx pocTa. LIoHa3aH0, '{TO 0npexeneIrMe npe1le.m ~0moZi cpeabI Tpe6yeT ;IBYX orpaa- 

IiqeHMti: ManoR 0nT~sec~oi my6mrbI II onpefienemori cTeneHi1 nys~~c:Toro IIepanHosecm. 

B 06meM, npe@Jl Ii3MeHHeTCR B COOTBeTCTBRH KaIi (' 06bIFEHOBeHHbIM, TZIK II C MO~I@I~I~IIpO- 

BaHHbIM KOE$I@IJI4eHTOM nJIaHlf3. &IFl nmeapm0BambIx aazas ~6na311 nywrc~oro 

paBHOBeCWI, o6a 3TMX cpeaaax Hoa~@lqHeHTa CB~URTCR IE JIaHetiHowy cpenweMy KO3@@Iq- 
tleHTy %aHHa, IEOTOpbIti FIB,?fIeTCR 06paTHOti BeJItiWHOli @IMHe MaCIIITa63. 


